Learning to Design Games: Strategic Environments in Deep Reinforcement Learning

نویسندگان

  • Haifeng Zhang
  • Jun Wang
  • Zhiming Zhou
  • Weinan Zhang
  • Ying Wen
  • Yong Yu
  • Wenxin Li
چکیده

In typical reinforcement learning (RL), the environment is assumed given and the goal of the learning is to identify an optimal policy for the agent taking actions through its interactions with the environment. In this paper, we extend this setting by considering the environment is not given, but controllable and learnable through its interaction with the agent at the same time. Theoretically, we find a dual Markov decision process (MDP) w.r.t. the environment to that w.r.t. the agent, and solving the dual MDP-policy pair yields a policy gradient solution to optimizing the parametrized environment. Furthermore, environments with discontinuous parameters are addressed by a proposed general generative framework. While the idea is illustrated by an extended two-agent rock-paper-scissors game, our experiments on a Maze game design task show the effectiveness of the proposed algorithm in generating diverse and challenging Mazes against different agents with various settings.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Can Deep Reinforcement Learning Solve Erdos-selfridge-spencer Games?

Deep reinforcement learning has achieved many recent successes, but our understanding of its strengths and limitations is hampered by the lack of rich environments in which we can fully characterize optimal behavior, and correspondingly diagnose individual actions against such a characterization. Here we consider a family of combinatorial games, arising from work of Erdos, Selfridge, and Spence...

متن کامل

Can Deep Reinforcement Learning Solve Erdos-Selfridge-Spencer Games?

Deep reinforcement learning has achieved many recent successes, but our understanding of its strengths and limitations is hampered by the lack of rich environments in which we can fully characterize optimal behavior, and correspondingly diagnose individual actions against such a characterization. Here we consider a family of combinatorial games, arising from work of Erdos, Selfridge, and Spence...

متن کامل

Deep Reinforcement Learning from Self-Play in Imperfect-Information Games

Many real-world applications can be described as large-scale games of imperfect information. To deal with these challenging domains, prior work has focused on computing Nash equilibria in a handcrafted abstraction of the domain. In this paper we introduce the first scalable endto-end approach to learning approximate Nash equilibria without any prior knowledge. Our method combines fictitious sel...

متن کامل

Playing FPS Games with Deep Reinforcement Learning

Advances in deep reinforcement learning have allowed autonomous agents to perform well on Atari games, often outperforming humans, using only raw pixels to make their decisions. However, most of these games take place in 2D environments that are fully observable to the agent. In this paper, we present the first architecture to tackle 3D environments in first-person shooter games, that involve p...

متن کامل

Learning to predict where to look in interactive environments using deep recurrent q-learning

Bottom-Up (BU) saliency models do not perform well in complex interactive environments where humans are actively engaged in tasks (e.g., sandwich making and playing the video games). In this paper, we leverage Reinforcement Learning (RL) to highlight task-relevant locations of input frames. We propose a soft attention mechanism combined with the Deep Q-Network (DQN) model to teach an RL agent h...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1707.01310  شماره 

صفحات  -

تاریخ انتشار 2017